Characterizing weighted MSO for trees by branching transitive closure logics
نویسندگان
چکیده
We introduce the branching transitive closure operator on weighted monadic second-order logic formulas where the branching corresponds in a natural way to the branching inherent in trees. For arbitrary commutative semirings, we prove that weighted monadic second order logics on trees is equivalent to the definability by formulas which start with one of the following operators: (i) a branching transitive closure or (ii) an existential second-order quantifier followed by one universal firstorder quantifier; in both cases the operator is applied to step-formulas over (a) Boolean first-order logic enriched by modulo counting or (b) Boolean monadic-second order logic. ACM classification: F.1.1, F.4.1, F.4.3.
منابع مشابه
Monadic Second-Order Logic and Transitive Closure Logics over Trees
Model theoretic syntax is concerned with studying the descriptive complexity of grammar formalisms for natural languages by defining their derivation trees in suitable logical formalisms. The central tool for model theoretic syntax has been monadic second-order logic (MSO). Much of the recent research in this area has been concerned with finding more expressive logics to capture the derivation ...
متن کاملProperties of Binary Transitive Closure Logics over Trees
Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate logic by a transitive closure operator of binary relations. Deterministic binary transitive closure logic (FOD∗) is the restriction of FO∗ to deterministic transitive closures. It is known that these logics are more powerful than FO on arbitrary structures and on finite ordered trees. It is also known that...
متن کاملThe Boundary Between Decidability and Undecidability for Transitive-Closure Logics
To reason effectively about programs it is important to have some version of a transitive closure operator so that we can describe such notions as the set of nodes reachable from a program’s variables. On the other hand, with a few notable exceptions, adding transitive closure to even very tame logics makes them undecidable. In this paper we explore the boundary between decidability and undecid...
متن کاملExpressiveness of Monadic Second-Order Logics on Infinite Trees of Arbitrary Branching Degree
In this thesis we study the expressive power of variants of monadic second-order logic (MSO) on infinite trees by means of automata. In particular we are interested in weak MSO and well-founded MSO, where the second-order quantifiers range respectively over finite sets and over subsets of well-founded trees. On finitely branching trees, weak and well-founded MSO have the same expressive power a...
متن کاملModel Theoretic Syntax and Transitive Closure Logic
One of the most productive interactions between logic and computational linguistics in the last decade has been model theoretic syntax, a research program initiated by Rogers [8]. As a number of grammar formalisms proposed in linguistics and natural language processing are formulated as well-formedness conditions on trees, Rogers observed that the majority of these constraints can be expressed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 594 شماره
صفحات -
تاریخ انتشار 2015